
2P-266

Quantitative Evaluation of Anesthesia Depth and Myocardial Infarction Impact on Mitral Annular Velocity in Rats Using Tissue Doppler Imaging. 組織ドプラを用いたラットの麻酔深度と心筋梗塞が 僧帽弁輪速度に与える影響の定量的評価

OTakuya Akashi, Mina Matsumoto, Yoshizo Fukuda, Ayahito Kimura O赤司 卓也, 松本 美奈, 福田 好造, 木村 恵人 日精バイリス株式会社 滋賀研究所 NISSEI BILIS Co., Ltd., Shiga Laboratory

Introduction

Left ventricular function in rat heart failure models has been assessed by echocardiography using left ventricular ejection fraction in Motion mode (M-mode), left ventricular inflow velocity in pulsed Doppler mode (D-mode), and maximum mitral annular translation velocity in tissue Doppler imaging mode (TDI-mode). It has been widely reported about usage of isoflurane (ISO) and mixed ketamine/xylazine anesthesia for the assessment of left ventricular function. We evaluated whether medetomidine-midazolam-butorphanol (MMB) anesthesia (Experiment 1). In addition, we examined temporal changes in left ventricular function under MMB anesthesia in rat myocardial infarction model (Experiment 2).

Materials & Methods

This study was conducted as approved by the Institutional Animal Care and Use Committee of NISSEI BILIS Co., Ltd., Shiga Laboratory.

MMB Anesthesia (subcutaneous injection)

	Dose (mg/kg)				
Drug	Low (L MMB)	High (H MMB)			
Medetomidine (Kyoritsu Seiyaku Corp.)	0.075	0.15			
Midazolam (Sandoz K.K.)	1.0	2.0			
Butorphanol (Meiji Seika Pharma Co., Ltd)	1.25	2.5			

Anesthesia

ISO Anesthesia (inhalation)

 $2.0 \sim 3.0\%$, 2.5 L/min

Echocardiography

Device: Vivid S6, GE Healthcare

• M-mode: diastolic left ventricular internal dimension (LVIDd), systolic left ventricular internal dimension (LVIDs), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (%FS), and heart rate (HR)

- D-mode: early diastolic filling velocity (E), atrial systolic velocity (A), and early diastolic filling velocity to atrial contraction velocity ratio (E/A)
- TDI-mode: septal early diastolic mitral annular tissue velocity (e'), septal atrial systolic mitral annular tissue velocity (a'), and peak systolic myocardial velocity (s')

Analysis

Parameters

Individual data were calculated on the average of values from three consecutive cardiac cycles. E/e' was calculated from the E and e' waves.

Experiment 1

Animals

Male Wistar rats (Japan SLC, Inc.), 12 or 7 weeks old

			Echocardiography			
Groups	n	Anesthesia	Age	Imaging mode		
ISO	6	Isoflurane (one day after L MMB evaluation)	7 weeks old	M-mode		
L MMB		L MMB				
H MMB	2	H MMB	12 weeks old			

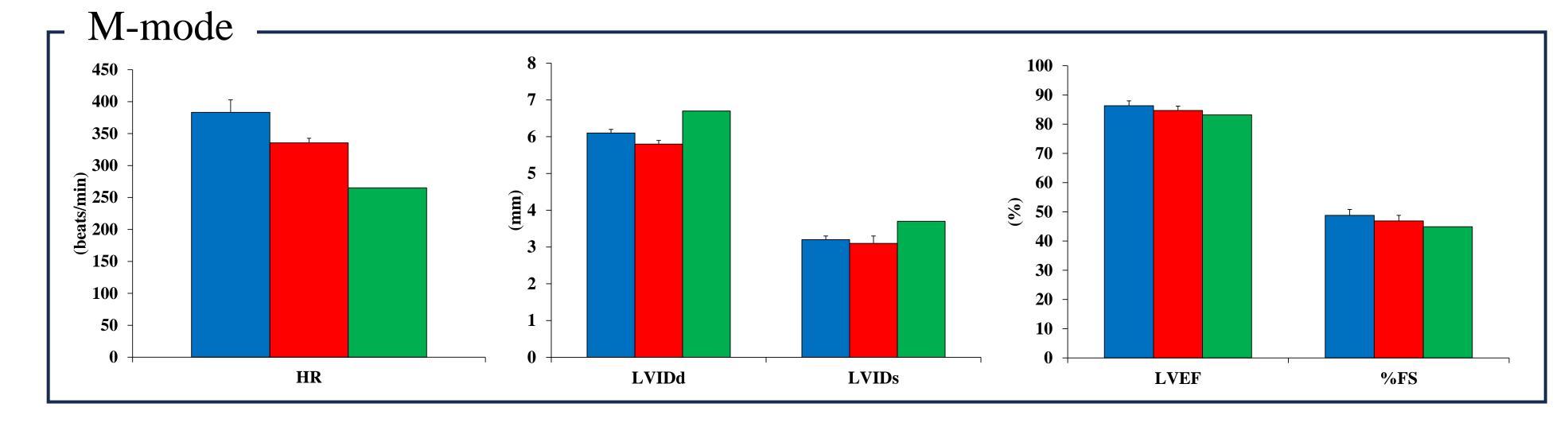
Experiment 2

Animals

Male Wistar rats (Japan SLC, Inc.), 7 weeks old Group design

Five animals underwent complete coronary artery ligation (MI) under H MMB anesthesia, and three animals with no apparent left ventricular wall motion were allocated to the MI group.

Croups		A mastle asia	Echocardiography				
Groups	n	Anesthesia	Time point	Imaging mode			
Normal (intact animal)	6		MI Day28	M-mode			
MI	3	L MMB	MI Day7 MI Day14 MI Day28	D-mode TDI-mode			


Left heart cardiac catheterization

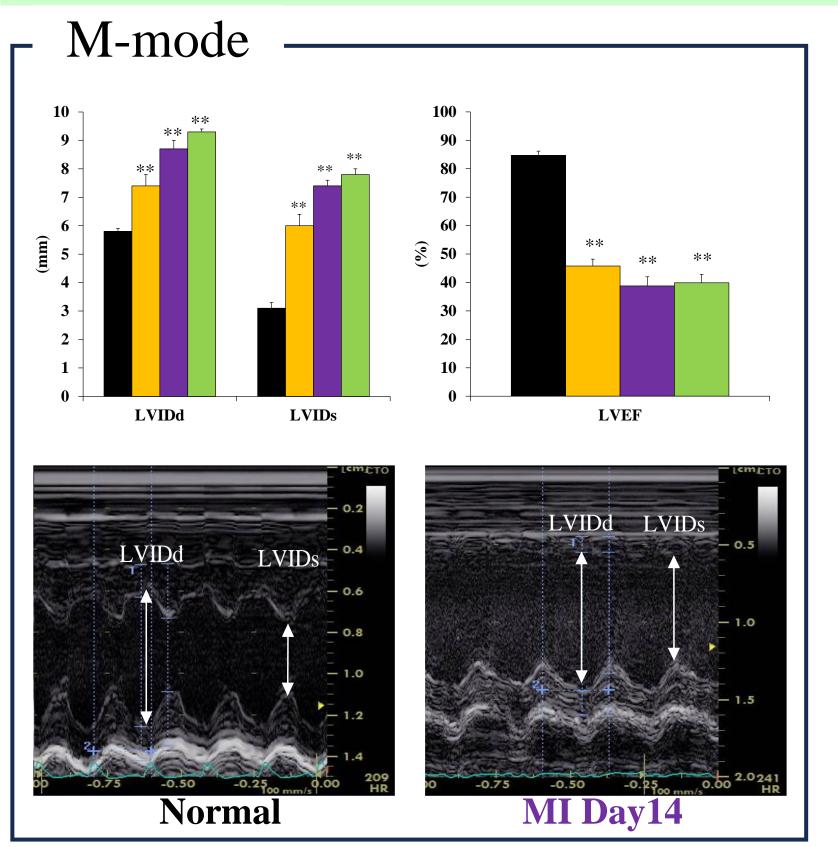
- Time point: MI Day 28
- Number of animals: MMB; n=2, MI; n=3
- Methods

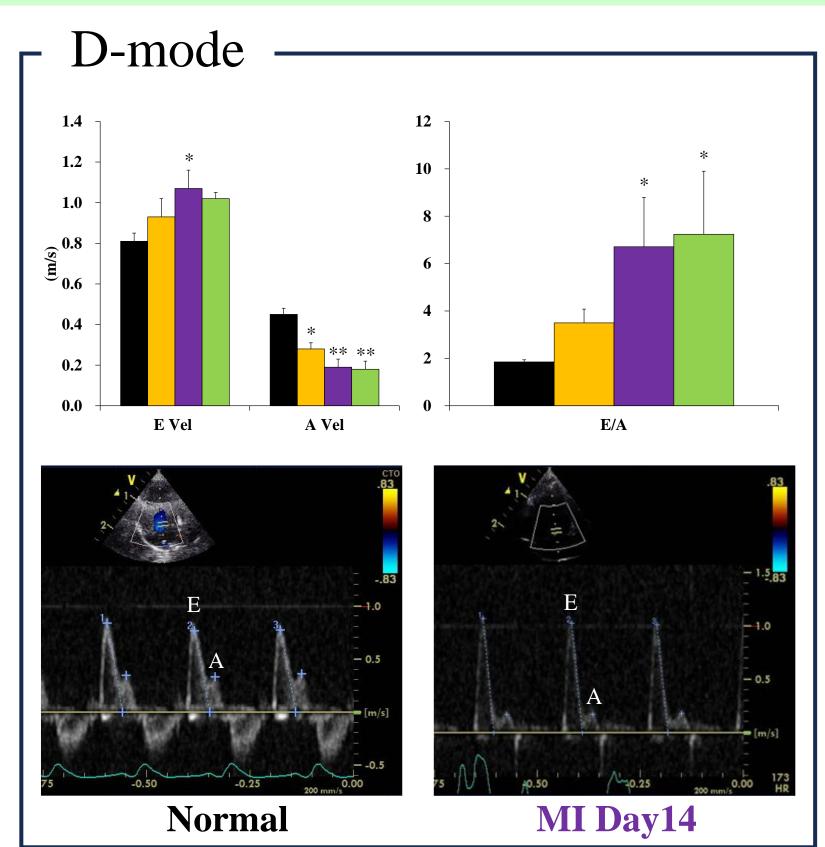
A Miller catheter (SPR-215, Millar Instruments) was inserted into the left ventricular through the right carotid artery to measure LVEDP and recorded on a Labchart 8 (AD Instruments) via a polygraph system (RMT-1000, Nihon Kohden Corp.).

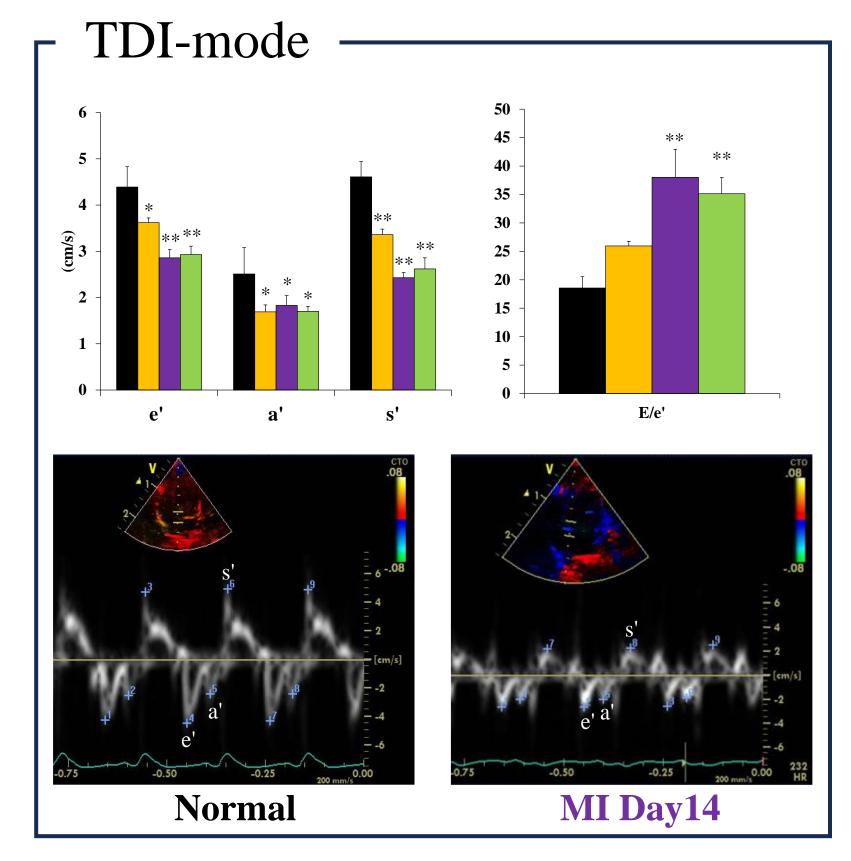
Results & Discussions

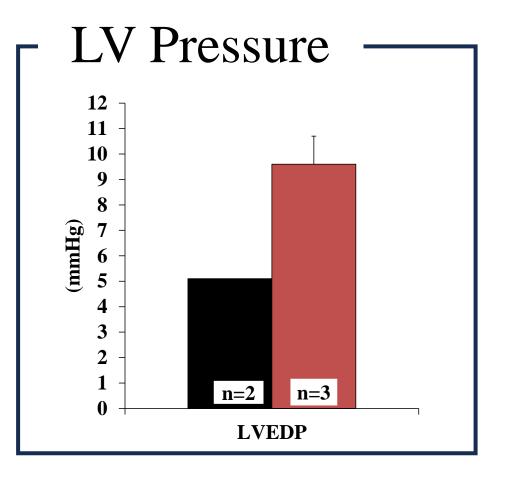
Experiment 1

Experiment 1: Comparison of MMB and ISO anesthesia

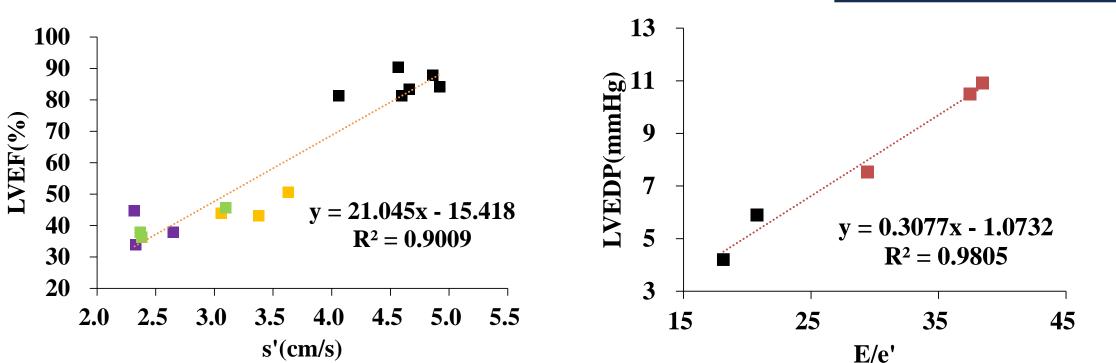

Standard group	Comparative group	HR	LVIDd	LVIDs	LVEF	%FS		
ISO	L MMB	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow		
	H MMB	$\downarrow\downarrow$	↑	↑	\rightarrow	\rightarrow		
no change 1 increased 1 decreased								


→: no change, ↑: increased, ↓: decreased


L MMB anesthesia was available as an anesthetic for left ventricular function evaluation.


> Each value represents the mean \pm S. E. Experiment 1 : ISO : L MMB : H MMB No significant difference between ISO and L MMB groups.

Experiment 2



Each value represents the mean \pm S. E. Experiment 2 : Normal : MI Day7 ■: MI Day14 ■: MI Day28 * and **: p<0.05 and p<0.01 vs Normal by Dunnett's test

Strong positive correlations were observed between LVEF and s', as well as between LVEDP and E/e'.

Experiment 2: Sequential changes in left ventricular function in a rat MI model

Measurement parameters												
Standard	Comparative	M-mode				D-mode		TDI-mode			LV Pressure	
group	group	EF	LVIDd	LVIDs	E Vel	A Vel	E/A	e'	a'	s'	E/e'	LVEDP
Normal	MI	↓ Day 7-28		↓ Day 14	Day 7-28	† Day 14-28		↓ Day 7-2	28	† Day 14-28	† Day 28	
→: no cha	→: no change, ↑: increased, ↓: decreased											

Conclusion

Based on these results, MMB anesthesia proved to be viable for left ventricular function assessment, enabling measurements of left ventricular ejection fraction, left ventricular inflow velocity waveform, and maximum mitral annular translation velocity. Furthermore, it was possible to observe the temporal progression of cardiac dysfunction in the myocardial infarction model. COI: disclosure information: We have no financial relationship to disclose for our presentation contents.